Optimization of the arithmetic of the ideal class group for genus 4 hyperelliptic curves over projective coordinates
نویسندگان
چکیده
The aim of this paper is to reduce the number of operations in Cantor’s algorithm for the Jacobian group of hyperelliptic curves for genus 4 in projective coordinates. Specifically, we developed explicit doubling and addition formulas for genus 4 hyperelliptic curves over binary fields with h(x) = 1. For these curves, we can perform a divisor doubling in 63M + 19S, while the explicit adding formula requires 203M + 18S, and the mixed coordinates addition (in which one point is given in affine coordinates) is performed in 165M + 15S. These formulas can be useful for public key encryption in some environments where computing the inverse of a field element has a high computational cost (either in time, power consumption or hardware price), in particular with embedded microprocessors.
منابع مشابه
Group Law Computations on Jacobians of Hyperelliptic Curves
We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring Fq[x], the algorithm we propose solves a linear...
متن کاملFast explicit formulae for genus 2 hyperelliptic curves using projective coordinates (Updated)
This contribution proposes a modification of method of divisors group operation in the Jacobian of hyperelliptic curve over even and odd characteristic fields in projective coordinate. The hyperelliptic curve cryptosystem (HECC), enhances cryptographic security efficiency in e.g. information and telecommunications systems (ITS). Index Terms – hyperelliptic curves, explicit formulae.
متن کاملEfficient Pairing Computation on Genus 2 Curves in Projective Coordinates
In recent years there has been much interest in the development and the fast computation of bilinear pairings due to their practical and myriad applications in cryptography. Well known efficient examples are the Weil and Tate pairings and their variants such as the Eta and Ate pairings on the Jacobians of (hyper-)elliptic curves. In this paper, we consider the use of projective coordinates for ...
متن کاملFast Arithmetic In Jacobian Of Hyperelliptic Curves Of Genus 2 Over GF(p)
In this paper, we suggest a new fast transformation for a divisor addition for hyperelliptic curves. The transformation targets the Jacobian of genus-2 curves over odd characteristic fields in projective representation. Compared to previously published results, the modification reduces the computational complexity and makes hyperelliptic curves more attractive for applications.
متن کاملEmpirical optimization of divisor arithmetic on hyperelliptic curves over F2m
A significant amount of effort has been devoted to improving divisor arithmetic on low-genus hyperelliptic curves via explicit versions of generic algorithms. Moderate and high genus curves also arise in cryptographic applications, for example, via the Weil descent attack on the elliptic curve discrete logarithm problem, but for these curves, the generic algorithms are to date the most efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. in Math. of Comm.
دوره 4 شماره
صفحات -
تاریخ انتشار 2010